2016 Consumer Confidence Report Water System Name: OID - ID #49 (Gilbert Tract) Report Date: 02/14/17 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2016 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. | Type of water source(s) in use: | Grou | ındwater We | ell | | | | |--|----------|-------------------------|---|---|--|--| | Name & general location of source | e(s): | Well #1 on Oakhurst Dr. | | | | | | D. I. W. O | | | C 1.1: I C2002 | | The second secon | | | Drinking Water Source Assessmen | it infor | mation: | Completed in June of 2002 | - see last page | | | | Time and place of regularly schedu | ıled bo | ard meeting | s for public participation: | None | | | | | | | | | | | | HILLIAN TO THE PARTY OF PAR | | 100 | MANAGEMENT OF THE STATE | A CONTRACT OF THE PROPERTY | | | For more information, contact: Joe Buila Phone: (209) 847-0341 ### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water. **Regulatory Action Level (AL)**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (µg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | Microbiological
Contaminants | Highest No.
of
Detections | No. of Months
in Violation | MCL | MCLG | Typical Source of Bacteria | | |---|---------------------------------|-------------------------------|--|------|--------------------------------------|--| | Total Coliform Bacteria | (In a mo.)
<u>4*</u> | I | More than 1 sample in a month with a detection | 0 | Naturally present in the environment | | | Fecal Coliform or E. coli | (In the year) | 0 | A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i> | 0 | Human and animal fecal waste | | | E. coli
(Federal Revised Total
Coliform Rule) | (From 04/01/16 - 12/31/16) | 0 | (a) | 0 | Human and animal fecal waste | | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. | Lead and Copper (and reporting units) | Sample
Date | No. of
Samples
Collected | 90 th Percentile Level Detected | No. Sites
Exceeding
AL | AL | PHG | Typical Source of Contaminant | |---------------------------------------|----------------|--------------------------------|--|------------------------------|-----|-----|---| | Lead (ppb) | 06/10/14 | 35 | < 5 | 0 | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm) | 06/10/14 | 35 | 0.06 | 0 | 1.3 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | |--|----------------|-------------------|------------------------|------|---------------|---| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Sodium (ppm) | 02/04/14 | 18 | | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 02/04/14 | 286 | | None | None | Sum of polyvalent cations present
in the water, generally magnesium
and calcium, and are usually
naturally occurring | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report. 2016 SWS CCR Form Revised Jan 2017 | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | |---|----------------|-------------------|--|-----------------|--------------------------|---| | Nitrate as Nitrogen (ppm) | 02/01/16 | <u>1</u> | | 10 | 10 | Runoff and leaching from fertilizer use;
leaching from septic tanks and sewage;
erosion of natural deposits | | Arsenic (ppb) | 02/04/14 | 2 | | 10 | 0.004 | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes | | Chloroform (ppb) | 2014 | 2 | <1-3 | 80 | N/A | By-product of drinking water disinfection | | Ethylbenzene (ppb) | 2014 | < 0.5 | < 0.5 - 0.9 | 300 | 300 | Discharge from petroleum refineries; industrial chemical factories | | Total Xylenes (ppb) | 2014 | 6 | < 0.5 - 12 | 1750 | 1800 | Discharge from petroleum refineries; industrial chemical factories | | TABLE 5 – DET | ECTION O | F CONTAI | MINANTS W | ITH A <u>SE</u> | CONDARY | DRINKING WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Total Dissolved Solids (ppm) | 02/04/14 | 221 | | 1000 | N/A | Runoff/leaching from natural deposits | | Specific Conductance (umho/cm) | 02/04/14 | 324 | | 1600 | N/A | Substances that form ions when in water; seawater influence | | Chloride (ppm) | 02/04/14 | 2 | | 500 | N/A | Runoff/leaching from natural deposits; seawater influence | | Sulfate (ppm) | 02/04/14 | 2 | The state of s | 500 | N/A | Runoff/leaching from natural deposits' industrial wastes | | | (| | | | 1 | | | Turbidity (NTU) | 02/04/14 | 0.06 | <u></u> | 5 | N/A | Soil runoff | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided on the next page. # Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Oakdale Irrigation District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. 2016 SWS CCR Form Revised Jan 2017 # Summary Information for Contaminants Exceeding an MCL or AL, or a Violation of any Treatment or Monitoring and Reporting Requirements In February 2016, Total Coliform Bacteria was detected in the drinking water distribution system. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems. In response, the public was notified, and the entire drinking water system was disinfected, flushed, and re-tested. Follow-up testing confirmed that the problem had been resolved. In February of 2014, iron was detected at the source well at a level above the allowable limit. A follow-up resample was non-detected for iron. The State has established the maximum allowable limit for iron as a secondary limit, not as a primary limit. This secondary MCL is set to protect you from unpleasant aesthetic affects such as color, taste, odor, and the staining of plumbing fixtures and clothing while washing. A violation of this MCL does not pose a risk to public health. ## **Vulnerability Assessment Summary** A source water assessment was conducted for the OID - ID #49 (Gilbert Tract) water system in August of 2002. The source is considered most vulnerable to the following activities not associated with any detected contaminants: injection wells, dry wells, sumps, and septic systems - high density. Recent water quality analyses indicate that this source is in compliance with State Standards. However, the source is still considered vulnerable to activities located near the drinking water source. For more information regarding the assessment summary, contact: Joe Buila at (209) 847-0341. 2016 SWS CCR Form Revised Jan 2017